
ORIGINAL

Metabonomic Analysis of Urine from Chronic Unpredictable Mild
Stress Rats Using Gas Chromatography–Mass Spectrometry

Yu-Zhi Zhou • Xing-Yu Zheng • Xiao-Jie Liu •

Zhen-Yu Li • Xiao-Xia Gao • Hai-Feng Sun • Li-Zeng Zhang •

Xiao-Qing Guo • Guan-Hua Du • Xue-Mei Qin

Received: 22 June 2011 / Revised: 9 November 2011 / Accepted: 17 November 2011 / Published online: 8 January 2012

� Springer-Verlag 2012

Abstract Depression is a prevalent complex psychiatric

disorder and its pathophysiological mechanism is not yet well

understood. In this study, we investigated the metabolic pro-

filing of urine samples from chronic unpredictable mild stress

(CUMS) rats to find potential disease biomarkers and research

pathology of depression. Metabolome in urine was analyzed

using gas chromatography/mass spectrometry (GC/MS) in

conjunction with multivariate statistical techniques. The urine

samples of male Sprague–Dawley rats were collected at dif-

ferent time points and then were derivatized by methoxima-

tion/silylation. Clear separation between the model and

control group was achieved, and 15 metabolites were identi-

fied, which suggested that the depressed state may be related

to neurotransmitter, energy metabolism and immunity. The

time-dependent trajectory of metabolites pattern revealed that

the maximum biochemical change happened on the 21st day,

which was consistent with the results of behavior tests. The

study suggested that the metabonomic approach could be used

as a potentially powerful tool to investigate the biochemical

change in certain physiopathological conditions, such as

depression, as an early diagnostic means.
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Introduction

Depression is one of the most common psychiatric disor-

ders in the world. It is a major cause of disability, suicide

and physical disorders [1]. It amounts to 12.3% of the

global burden of disease and has been predicted to rise up

to 15% by 2020 [2]. Chronic unpredictable mild stress

(CUMS), a well-validated animal model, has been used

widely for studying clinical depression as well as evalu-

ating antidepressant effects of diverse drugs [3, 4]. Much of

the work has been done successfully in individual gene

expression, protein structure and function, as well as bio-

chemical studies on sympathetic nervous system such as

hypothalamic–pituitary–adrenocortical axis, and noradren-

ergic and immunological systems [5–8]. However, little is

known about the change of the whole metabolome in

organisms during the pathological procedure.

Metabonomic approach is a high-throughput one.

Recently, it has been successfully applied to analyze various

biological samples. Combined with multivariate statistics, it

can extract meaningful biological information from the

resultant complex and huge data sets [9, 10]. It can provide

much valuable information on stimuli-induced biochemical

perturbations, with metabolic profiles carrying mechanism-
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related information. The approach can be regarded as com-

plementary to genomics and proteomics approaches [11, 12].

It has been increasingly used as a versatile tool for the dis-

covery of molecular biomarkers in many areas such as in the

diagnosing or prognosing clinical diseases, exploring the

potential mechanism of diverse diseases and assessing ther-

apeutic effects of drugs [13–15]. GC–MS has long been used

for metabolic profiling study due to its high sensitivity, reli-

ability and the ease of metabolome identification [16].

Combined with the easily accessible database of NIST

(http://www.nist.gov), GC–MS has gained more application

in different fields [17]. Metabonomic analysis generates large

and complex data sets. Therefore, chemometric analysis has

become an integral part of metabolic profiling techniques due

to its ability to provide interpretable models for complex inter-

correlated data [4]. Multivariate projection methods allow the

identification of groups of variables that are interrelated via

phenomena that cannot be directly observed. Partial least

squares discriminant analysis (PLS-DA) or (orthogonal par-

tial least squares linear discrimination analysis) OPLS-DA

can obtain a list of potential biomarkers, which are statisti-

cally significant and which separate one class from another

[4]. In this study, PLS-DA and OPLS-DA were utilized.

Although urine sample has its disadvantages, such as high

salt concentration, it has been heavily used in metabonomic

studies because of being minimally invasive to animals or

human and primarily revealing the overall metabolic state of

the given organism. In addition, the analysis of urine samples

in different time points can get the metabolic change of time-

related trajectory because of the easily dynamic samples’

collection at different time points [18]. The primary goal of

this work is to characterize metabolic abnormalities in urine

and the changes in its time-related trajectory. GC/MS was

applied to reveal the metabolic profiling of the urine samples

from both the control group and the CUMS group. The time-

related trajectory of metabolites’ pattern during the model

building period is illustrated to dynamically monitor the

response of CUMS, and to find the metabolic variations with

time. Endogenous metabolome for discrimination between

the CUMS and control groups have been found to be

potential urine biomarkers for depression. This work, which

will expand our understanding of molecular mechanism for

depression, is a descriptive study on metabolome detected in

the urine of a rodent model, which may reveal valuable

information for the early diagnosis of depression.

Materials and Methods

Reagents and Animals

Pyridine, acetonitrile, N-heptane and methoxylamine

hydrochloride (O-methyl hydroxylamine) were of analytical

grade and obtained from China National Pharmaceutical

Group Corporation (Shanghai, China). N-Methyl-N- (tri-

methylsilyl) trifluoracetamide (MSTFA) containing 1% tri-

methylchlorosilane (TMCS) was purchased from Pierce

Chemical Company (Rockford, USA). N-Tetracosane, pur-

chased from Johnson Matthey Company (Shanghai, China),

was used as an internal quality standard. Alanine, valine,

isoleucine, proline, glycine, serine, threonine, glutamic acid,

phenylalanine, fructose, galactose, glucose, tyrosine and

tryptophan were purchased from Solarbio (Shanghai, China)

and used as standard substances.

The animal experiments were approved by national

legislations of China and local guidelines. A total of 16

male Sprague–Dawley (SD) rats (200 ± 20 g) from the

experimental animal Center of The National Institute for

the Control of Pharmaceutical and Biological Products

were employed in this study (No. SCXK2005-0004).

Chronic Unpredictable Mild Stress Procedure

After 2 weeks of habituation, all the rats were divided into

the following two groups, CUMS and control groups

(n = 8), according to the body weights and behavior scores

in the open-field experiment. The CUMS procedures

include nine different kinds of stressors, which are pro-

vided in the Supplementary materials.

Behavior Test

Open-field test and sucrose preference test were conducted

as previously described [19]. The experimental details and

statistical analysis are provided in the Supplementary

materials.

Sample Collection and Preparation

Urine samples were collected overnight (12 h) in metabo-

lism cages from all the rats on the 0, 7th, 14th and 21st day.

Sodiumazide was added to the collection vessels as an

antibacterial agent. After centrifugation at 5,000g for

10 min to remove residues, urine samples were immedi-

ately stored in aliquots at -80 �C until GC/MS analysis.

Sample preparation for GC/MS analysis was based on

methods developed for targeted GC/MS analysis of human

urinary metabolome [20, 21]. In brief, 150 lL of urine was

incubated with 30 units of urease (Type C-3, Sigma) at

37 �C for 15 min. Then, 600 lL of methanol was added,

mixed and centrifuged to precipitate protein; 300 lL of the

supernatant was vacuum dried. The residue was chemically

derivatized to increase the volatility and thermal stability,

using 30 lL O-methylhydroxylamine (15 mg/mL in pyri-

dine) at 70 �C for 1 h to enhance oxime formation, then

50 lL MSTFA ? 1% TMCS (Sigma) at 40 �C for 90 min
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to enhance trimethylsilylation. The final solution was

vortex mixed with 1,200 lL heptane (0.1 mg/mL tetraco-

sane dissolved in heptane).

GC/MS Method

GC/MS analysis was performed using a Polaris Q ion trap

mass spectrometer (Thermo Fisher Scientific Inc., USA).

Chromatography was performed on a DB-5MS capillary

column (30 m 9 250 lm i.d., 0.25 lm film thickness; 5%

diphenyl cross-linked 95% dimethylpolysiloxane; Agilent

J&W Scientific, Folsom, CA, USA). Helium carrier gas

was used at a constant flow rate of 1 mL/min and 1.0 lL

derivatized samples was injected into the GC/MS instru-

ment. To acquire a well separation, the column temperature

was initially maintained at 60 �C for 3 min, and then

increased from 60 to 140 �C at a rate of 7 �C/min for

4 min. Then, the column temperature was increased

to180 �C at 5 �C/min for another 6 min. After that, the

temperature was increased to 280 �C at 5 �C/min, and held

for 2 min. The injection, interface and source temperatures

were set at 260, 280 and 200 �C, respectively. After a

solvent delay of 9 min, MS detection was implemented

with electron ionization mode (electron energy of 70 eV)

and full scan mode (m/z 50-650).

Identification of the Endogenous Metabolome

All collected urine samples were analyzed, and low

molecular weight metabolomes were represented as the

chromatographic peaks in the GC total ion current (TIC)

chromatograms. Peaks with intensity higher than tenfold of

the signal-to-noise (S/N) ratio were recorded and inte-

grated. EI-MS spectra of these peaks were interpreted using

AMDIS (version 2.1, DTRA/NIST, USA) software, and

identification of metabolites was based on the NIST library

2005, some of which were further confirmed using the

commercially available standards by comparing their MS

spectra and retention times.

Data Analysis

All the GC–MS raw files were converted to NetCDF format

via Xcalibur (Thermo Fisher Scientific Inc., USA) and

subsequently processed by the XCMS toolbox (http://

metlin.scripps.edu/download/) using XCMS’s default set-

tings with the following exceptions: xcmsset (full width at

half-maximum: fwhm = 4; S/N cutoff value: snthresh =

10, max = 20), group (bw = 10). The resulting table was

exported into Matlab software 7.0 (The MathWorks, Inc.),

where normalization was performed prior to multivariate

analyses. The resulting two-dimensional matrix involving

peak index (RT-m/z pair), sample names (observations)

and normalized peak area percent was introduced into the

SIMCA-P 11.0 software package (Umetrics AB, Sweden),

where PLS-DA, OPLS-DA and VIP statistics were per-

formed to show the possible presence of cluster and to

extract novel potential biomarkers.

Results and Discussion

Effect on Open-Field Activity Scores, Body Weight

and Sucrose Preference Test

Open-field test, body weight and sucrose preference test

were measured during the experimental period. In these

tests, there were significant differences between the rats in

the CUMS and control groups (Table 1). After 3 weeks of

experiment, rats in the CUMS group showed a significant

decrease in the number of rearing and crossing (P \ 0.01),

in the sucrose preference test (P \ 0.01) and also in the

body weight (P \ 0.01) compared with the control group,

indicating the stress-related effects on the rats.

In summary, the marked decrease in the body weight

gain, sucrose preference percentage, crossing and rearing

numbers, as well as the significantly increased immobility

time [22, 23], all similar to the clinical symptoms of

depression in humans, suggested that rat depression models

were achieved after 3 weeks of CUMS treatment.

GC/MS Spectra of the Two Groups and the Metabolic

Profiling of Urine

Urine metabolic profiles of six CUMS rats and six control

rats were obtained by GC/MS with the method as

described above. Typical GC/MS total ion current (TIC)

chromatograms of urine sample of the control group and

the model group are illustrated in Fig. 1. Visual inspection

of these spectra revealed significant differences in the TIC

profile between control and model groups, indicating that

the endogenous metabolite levels were perturbed by

CUMS. Many peaks representing components with dif-

ferent concentration levels were present in the GC/MS

spectra.

The identification of endogenous metabolome was based

on comparing with the corresponding standards according

to their retention times and mass spectra characteristics or

searching the mass spectral database library NIST 2005. In

all, 43 metabolites were identified in the urine profiling in

this study (shown in Fig. 2), including amino acids, fatty

acids, sugars and organic acids. The peaks in TICs of the

urine samples represented the endogenous metabolome in

urine. Therefore, each TIC could be considered as a fin-

gerprint of endogenous metabolome in urine.
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Multivariate Statistical Analysis and Potential

Biomarkers

PLS-DA was applied to maximize the metabolites’ differ-

ence between the model group and control group on the

basis of the GC/MS spectra. The scores plot reveals any

inherent clustering of groups of data, based purely on the

closeness or similarity of their input coordinates. Thus, the

analysis provides a convenient and objective means of

visualizing groups and classifying them. The PLS-DA

score plot showed a better discrimination with Q2 value of

0.989 (R2X = 0.826, R2Y = 1), suggesting that the model

was reliable and good for prediction. The score plot clearly

distinguishes the model group from the control group

(Fig. 3d).

These findings suggested that urine metabolic pattern was

significantly changed under CUMS treatment. After 21 days’

stimuli, rats in the model group could be distinguished from

those in the control group based on urine samples. The dif-

ference between the model and control groups was more

remarkable than the intra-group difference. It showed that the

urinary metabolic pattern was significantly changed in the

model group and the CUMS was built successfully, which

was consistent with the result of behavior tests.

The important variables accountable for such signifi-

cant separation could be extracted from loadings plot or

Table 1 The dynamical

changes of behavior scores of

healthy control and model group

The behavior scores in the

control group (NS) and CUMS

model group (MS) were

expressed as mean ± SD

(n = 8). Compared with the

CUMS group: * p \ 0.05,

**p \ 0.01

Test items 0 days 7 days 14 days 21 days

Body weight (g)

NS 239.81 ± 9.92 284.56 ± 13.50 294.81 ± 32.80 314.12 ± 28.28**

MS 235.56 ± 18.16 264.75 ± 25.76 268.18 ± 26.75 262.13 ± 24.69

Sucrose preference (%)

NS 79.69 ± 32.21 76.84 ± 2.83 76.71 ± 10.42 79.00 ± 7.07**

MS 73.73 ± 11.83 78.29 ± 5.35 66.50 ± 7.07 54.29 ± 4.89

Open-field test

Crossing numbers

NS 71.50 ± 37.96 63.00 ± 40.41* 55.00 ± 28.00* 47.00 ± 12.06**

MS 90.13 ± 17.43 20.1 ± 14.43 19.37 ± 11.41 13.87 ± 9.53

Rearing numbers

NS 11.66 ± 6.83 10.00 ± 7.48* 9.00 ± 5.04* 5.66 ± 2.42**

MS 13.30 ± 4.52 2.20 ± 2.74 2.87 ± 2.41 0.67 ± 0.81

Immobility time (s)

NS 18.60 ± 44.42 49.32 ± 10.23 18.88 ± 23.59** 10.52 ± 19.12**

MS 0.14 ± 0.39 70.23 ± 54.59 129.25 ± 59.95 159.11 ± 84.8

Fig. 1 Typical GC/MS total ion current chromatograms (TIC) of the urine from rats in a the control group and b the chronic unpredictable mild

stress (CUMS)-treated model group on the 21st day
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VIP statistics of PLS-DA, respectively. According to the

criterion for VIP statistics, variables with VIP value [1.0

are considered as candidate biomarkers. But in the VIP list,

some metabolites showed great confidence intervals, sug-

gesting that their contribution to the PLS-DA model might

be caused by analytical variation. Such metabolites were

excluded from the list. Finally, 15 metabolites were gen-

erated as biomarker candidates: hexadecanoate, aconitate,

succinate, isocitrate, glycine, glutamic acid, glucose, ribose,

valine, aspartic acid, serine, phenylalanine, oxoglutaric

acid, indoleacetic acid (IAA) and b-alanine. These metab-

olites are given in Table 2 together with the PLS-DA

correlation coefficients indicating the relative

contributions of potential markers to the stimuli-per-

turbed profiles. The table shows that the levels of gly-

cine, ribose and indoleacetic acid increase (IAA) and the

levels of serine, b-alanine, aspartic acid, oxoglutaric

acid, glutamic acid, phenylalanine, alanine, valine, suc-

cinate, aconitate, isocitrate and hexadecanoic acid

decrease in the model group compared with those in the

control group. These metabolites are endogenous meta-

bolomes such as amino acids and organic acids, which

are involved in multiple biochemical processes. The

changes in these endogenous substances suggested that

biochemical perturbation was induced by CUMS, which

was detected.

Fig. 2 Chromatographic

profiles of the derivatized

urine. Peaks 1 lactic acid,

2 alanine, 3 valine, 4 benzoic

acid, 5 urea, 6 phosphoric acid,

7 isoleucine, 8 glycine,

9 butanedioic acid,

10 2,3-dihydroxypropanoic

acid, 11 fumaric acid, 12 serine,

13 threonine, 14 b-alanine,

15 3,4-dihydroxypropanoic

acid, 16 2-aminopropanoic acid,

17 malic acid, 18 threitol,

19 aspartic acid,

20 pyroglutamic acid,

21 glutamine,

22 2,3,4-trihydroxybutyric acid,

23 ketoglutaric acid,

24 glutamic acid,

25 phenylalanine, 26 ribose,

27 aconitic acid,

28 hydroxyphenylpropionic

acid, 29 isocitric acid,

30 deoxyglucose, 31 fructose,

32 glucose, 33 Sorbitol,

34 gluconic acid,

35 indoleacetic acid,

36 glalactonic acid,

37 hexadecanoic acid,

38 myo-inositol, 39 linoleate,

40 oleate, 41 uric acid,

42 uridine, 43 glucopyranoside
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Time-Dependent Metabolic Trajectory

After GC/MS determination and data analysis, a two-

dimensional PLS-DA scores plot was used to depict the

general variation of the metabolic pattern between the

chronic stress and control groups. No separation between

the two groups was observed in the PLS-DA scores plot on

day 0. The difference increased over time. Following

21 days of exposure to CUMS, a clear separation between

the chronic stress and control groups was observed in the

PLS-DA scores plot (Fig. 3), suggesting that exposure to

chronic unpredictable mild stress may lead to systemic

metabolic variation. Also, OPLS-DA was applied to show

the time-related trajectory of metabolome patterns from

day 0 to day 21 in the model and control groups, respec-

tively. Clear separation of metabolic states after 0, 7, 14

and 21 days of CUMS treatment was observed in the model

group (Fig. 4a), suggesting that exposure to unpredictable

Fig. 3 PLS-DA scores plot comparing the control group (black squares) and chronic unpredictable mild stress group (black circles) on day 0 (a),

7 (b), 14 (c) and 21 (d)

Table 2 List of potential

biomarker metabolites relevant

to CUMS rats

? relatively higher in the model

group, - relatively lower in the

model group

Retention time

(min)

Mass (m/z) Metabolites CUMS versus control

(correlation coefficient)

1 10.26 116.16 Alanine -0.0034

2 12.64 144.21 Valine -0.0014

3 14.50 277.16 Glycine 0.0049

4 14.81 147.19 Succinate -0.0031

5 15.68 188.19 Serine -0.0024

6 17.64 174.18 b-alanine -0.0030

7 20.77 232.22 Aspartic acid -0.0030

8 21.94 254.22 Oxoglutaric acid -0.0021

9 23.79 246.20 Glutamic acid -0.0019

10 24.01 218.17 Phenylalanine -0.0035

11 25.07 258.21 Ribose 0.0044

12 27.28 229.17 Aconitate -0.0027

13 29.24 347.14 Isocitrate -0.00132

14 35.20 202.22 Indoleacetic acid (IAA) 0.00033

15 37.75 313.28 Hexadecanoic acid -0.00045
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chronic stress might lead to a gradual metabolic variation.

However, metabolic variations with time in the control rats

could not be distinguished clearly (Fig. 4b).

Metabolic Pathway of Biomarker

After exposure to CUMS, there was alteration in 15

important metabolites contributing to a significantly dif-

ferent metabolic profile of the model group compared to

the control group. The mechanism of depression was

related to the metabolic pathway of these biomarkers,

seven of them were amino acids, four were organic acids,

three metabolic products of these were amino acids or

organic acids, and the last one was ribose. All the analyses

showed that depression was related to neurotransmitters,

energy metabolism and glycometabolism (Fig. 5).

Neurotransmitters

Glutamic acid and aspartic acid are the excitatory neuro-

transmitters in the mammalian nervous system [24], which

significantly decreased at day 21 in the model group.

Glycine is the inhibitory neurotransmitter [17] that signif-

icantly increased at day 21 in the model group. The

increased urinary level of glycine in CUMS rats may

suggest the injury of hepatic mitochondria, which causes

suppressed dynamic glycine cleavage system [25]. The

above results indicated that the function of the nervous

system of the model group rat might be lower under pro-

longed stress condition.

Energy Metabolism

Glutamic acid is converted to oxoglutaric acid by gluta-

mate dehydrogenase, aspartic acid is directly converted to

oxaloacetic acid by aminotransferase, and alanine and

glycine are converted to pyruvic acid by transamination

and the glycine cleavage system, respectively. Oxaloacetic

acid and oxoglutaric acid are the important intermediates in

tricarboxylic acid cycle (TCA); therefore, the decreased

level of glutamic acid, aspartic acid and alanine indicates

the dysfunction of the energy metabolism. In addition,

aconitate, succinate and isocitrate are the important

intermediates in TCA. Their decreased level also indicates

the dysfunction of the energy metabolism [15, 22]. The

reduced activity of the TCA leads to reduced ATP gener-

ation in the mitochondria, potentially leading to fatigue

which is a frequent symptom of depression [26], which was

also found in the animal model used in our study.

Glycometabolism

The concentration of ribose and glucose in the CUMS rats

were increased significantly. It was reported that depres-

sion was associated with glucose metabolism in the bio-

logical mechanisms, and glucose metabolism may be

affected by the abnormal secretion of depression-related

hormone [27].

Others

In this study, the decrease in the valine levels may cause

disorder in the function of the central nervous system; it

may be caused by stressors of CUMS related to depression

[28, 29].

In conclusion, we applied GC/MS to the metabonomic

analysis of urine obtained from CUMS rats, aiming to

observe the physiological changes with the change of time

Fig. 4 OPLS-DA scores plot of

variation in urinary metabolites

of rats during 21 days of

chronic stress. a CUMS group,

b control group

Fig. 5 The interrelation between the biomarkers and the relevant

pathways leads to depression. Significantly increased metabolites

detected in this study are shown in the ellipse. Significantly decreased

metabolites detected in this study are shown in the square
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and investigate the biomarker of depression. Forty-three

metabolites were identified among the detected compounds

from TIC chromatograms using the authentic standards and

the NIST 2005 mass spectral database. The concentrations

of 15 metabolites were observed to be significantly chan-

ged in the CUMS group when compared with the controls.

The elevated or decreased endogenous metabolites in the

urine of CUMS rats suggested a different metabolic pattern

between the CUMS and control groups. Using the KEGG

pathway database [30], it was found that neurotransmitters,

energy metabolism and glycometabolism were affected

after the CUMS treatment. Time-dependent metabolic

trajectory and behavior tests reached the same conclusion,

suggesting that exposure to chronic unpredictable mild

stress may lead to systemic metabolic variation. The

determination of potential biomarkers of depression and

the time-dependent metabolic trajectory may be useful for

the early clinical diagnosis of depression, and for evalu-

ating the treatment strategy and measuring the outcomes.
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